Large Scale 3D imaging and Analysis

Tarek M. Ashkar (El-Achkar), MD

3D imaging captures entire structures

Clendenon, Ferkowicz, Young, and Dunn. 2011. Deep Tissue Fluorescent Imaging in Scattering Specimens Using Confocal Microscopy. Microscopy and Microanalysis.

3D imaging captures entire structures

3D imaging captures entire structures

AQP1 AQP2 Actin DAPI

3D imaging improves data accuracy

Optical sections 13.5 µm 20.8 µm d a e b

3D imaging uncovers interactions between cells

Large scale imaging: distribution of cells throughout the tissue

Large scale imaging: distribution of cells throughout the tissue

Large scale imaging: interrogating thousands of cells

Tissue Preparation

Cleared tissue-mouse intestine

Nuclei Myristoylated tdTomato Myeloid cells ~1300 um x 600 um x 275 um

Mike Ferkowicz and Merv Yoder

Optical sectioning modalities

confocal fluorescence microscopy selective plane illumination microscopy multi-photon excitation fluorescence microscopy

Confocal fluorescence imaging

Light sheet microscopy for image large specimens quickly

- Massive volumes of cleared tissue
- 10-100 times faster than confocal and multi-photon excitation microscopy.
- Samples can be rotated for multiple views.

Curr Opin Genet Dev. 2011 Oct;21(5):566-72. doi: 10.1016/j.gde.2011.09.009. Epub 2011 Sep 30. Light sheet microscopy for real-time developmental biology. Weber M, Huisken J.

Clearing tissue for in toto imaging

- 1. remove lipids and partially unfold proteins
- 2. match tissue and mounting media refractive index

Nat Neurosci. 2013 Aug;16(8):1154-61. doi: 10.1038/nn.3447. Epub 2013 Jun 23. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Ke MT(1), Fujimoto S, Imai T.

J Microsc. 2011 May;242(2):148-56. doi: 10.1111/j.1365-2818.2010.03448.x. Epub 2010 Sep 27. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy. Young PA, Clendenon SG, Byars JM, Dunn KW.

Spectral unmixing of seven labels in human biopsy volumes

Analysis

3D image analysis software

Quantitative Analysis and Visualization

Tissue Cytometry

Histo-Cytometry: A Method for Highly Multiplex Quantitative Tissue Imaging Analysis Applied to Dendritic Cell Subset Microanatomy in Lymph Nodes

Michael Y. Gemer,^{1,*} Wolfgang Kastenmuller,¹ Ina Ifrim,¹ Juraj Kabat,² and Ronald N. Germain^{1,*} ¹Lymphocyte Biology Section, Laboratory of Systems Biology ²Biological Imaging Section, Research Technology Branch National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA *Correspondence: gemerny@niaid.nih.gov (M.Y.G.), rgermain@nih.gov (R.N.G.) http://dx.doi.org/10.1016/j.immuni.2012.07.011 Ch.A Ch.B Ch.C

Software used: •Huygen's Essential software •Imaris •Excel •Flojo

Volumetric Tissue Exploration and Analysis (VTEA)- *Seth Winfree*

VTEA in action

Applications

3D tissue cytometry of immune cells

3D tissue cytometry of immune cells

Using VTEA based analysis to uncover CD11C+ tubular epithelial cells

Six channel 3D mesoscale imaging and analysis of human nephrectomy

Immune cell analysis of human biopsies and correlation with clinical outcomes

Quantifying the spatial density of immune cells

Clustering of dendritic cells around glomeruli vs. tubules *mouse*

Quantifying the spatial density of infiltrating neutrophils *human*

Using VTEA to study signaling pathway activation

Micanovic R, Khan S, El-Achkar TM, Physio Rep 2015

Transcriptomics of S3 proximal tubules in THP-/- vs. THP+/+

JNK is activated in kidney injury

Quantitating c-Jun activation in uninjured S3 proximal tubules using VTEA

Challenges

- Validated antibodies/probes in tissue
- Improved segmentation in high cell density area
- Capacity of computer hardware, speed, space for large scale analysis

Exciting potential

- Technical advances:
 - Improved Imaging speed with multichannel SPIM
 - Improved staining and clearing (nanobodies, etc)
- Extensibility of VTEA
 - processing, exploring and analyzing data
 - novel segmentation methods
 - machine learning, shape recognition

Acknowledgement

- Seth Winfree, Kenneth Dunn, Gosia Kamocka, Bruce Molitoris
- Pierre Dagher, Katrina Kelly, Michael Eadon, Timothy Sutton
- Michael Ferkowicz, Mervin Yoder, Troy Markel
- Funding:
 - VA Merit Award, NIH-NIDDK Program Project Grant (P01DK056788)
 - NIH/NIDDK DK076169 Diacomp
 - Indiana Clinical and Translational Sciences Institute, funded in part by grant #UL1 TR001108 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award.
 - National Institutes of Health O'Brien Center for Advanced Renal Microscopic Analysis (NIH-NIDDK P30 DK079312).

Microscopy studies were conducted at the Indiana Center for Biological Microscopy.

Volume formation-finding nuclei

- Use a maximum distance between region centers to build volumes
- Extract means, Feret diameters, aspect ratios, etc.

Volume formation-finding "cytosol"

...and repeat a couple thousand times...